Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging.
نویسندگان
چکیده
Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.
منابع مشابه
Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model
Functionalized carbon nano-onions (f-CNOs) are of great interest as platforms for imaging, diagnostic and therapeutic applications due to their high cellular uptake and low cytotoxicity. To date, the toxicological effects of f-CNOs on vertebrates have not been reported. In this study, the possible biological impact of f-CNOs on zebrafish during development is investigated, evaluating different ...
متن کاملSynthesis and Characterization of Far-Red/NIR-Fluorescent BODIPY Dyes, Solid-State Fluorescence, and Application as Fluorescent Tags Attached to Carbon Nano-onions.
A series of π-extended distyryl-substituted boron dipyrromethene (BODIPY) derivatives with intense far-red/near-infrared (NIR) fluorescence was synthesized and characterized, with a view to enhance the dye's performance for fluorescence labeling. An enhanced brightness was achieved by the introduction of two methyl substituents in the meso positions on the phenyl group of the BODIPY molecule; t...
متن کاملCarbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics
Multishell fullerenes, known as carbon nano-onions (CNOs), have emerged as a platform for bioimaging because of their cell-penetration properties and minimal systemic toxicity. Here, we describe the covalent functionalization of CNOs with a π-extended distyryl-substituted boron dipyrromethene (BODIPY) dye with on/off modulated fluorescence emission activated by an acidic environment. The switch...
متن کاملNIR fluorescence labelled carbon nano-onions: synthesis, analysis and cellular imaging
The preparation of novel NIR fluorescent carbon based nanomaterials, consisting of boron difluoride azadipyrromethene fluorophores covalently attached to carbon nano-onions, is demonstrated. In addition, the analysis of the new nanomaterial is presented. The fluorescent nano-derivative properties are customized such that their emission can be reversibly on/off modulated in response to pH, which...
متن کاملA Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells
Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY)-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 22 شماره
صفحات -
تاریخ انتشار 2014